Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4-Chloro-*N*-(3,4,5-trimethoxybenzyl-idene)aniline

Aliakbar Dehno Khalaji,^a Jilla Asghari,^a Karla Fejfarová^b and Michal Dušek^b*

^aDepartment of Science, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 49189-43464, Iran, and ^bInstitute of Physics of the ASCR, Na Slovance 2, 182 21 Prague 8, Czech Republic Correspondence e-mail: dusek@fzu.cz

Received 22 December 2008; accepted 5 January 2009

Key indicators: single-crystal X-ray study; T = 120 K; mean σ (C–C) = 0.005 Å; R factor = 0.045; wR factor = 0.109; data-to-parameter ratio = 11.8.

The title compound, $C_{16}H_{16}CINO_3$, is a Schiff base displaying a *trans* configuration of the C=N double bond. In the crystal structure, intermolecular C-H···N and bifurcated C-H···(O,O) hydrogen bonds are observed.

Related literature

For backgroud and related structures, see: Khalaji *et al.* (2008); Khalaji & Harrison (2008); Khalaji *et al.* (2007); Zhang (2008); Akkurt *et al.* (2008); Kashmiri *et al.* (2008); Ren & Jian (2008). For the synthesis of the title compound, see: Khalaji & Ng (2008).

Experimental

Crystal data

 $\begin{array}{l} C_{16}H_{16}\text{CINO}_{3} \\ M_{r} = 305.75 \\ \text{Monoclinic, } P2_{1} \\ a = 7.2012 \ (2) \\ \text{Å} \\ b = 8.18700 \ (10) \\ \text{Å} \\ c = 12.9734 \ (3) \\ \text{Å} \\ \beta = 105.050 \ (2)^{\circ} \end{array}$

Data collection

Oxford Diffraction Gemini diffractometer Absorption correction: numerical

Absorption correction: numerical [Clark & Reid (1995) in *CrysAlis RED* (Oxford Diffraction, 2008)] $T_{min} = 0.680, T_{max} = 0.809$ V = 738.63 (3) Å³ Z = 2Cu K α radiation $\mu = 2.37 \text{ mm}^{-1}$ T = 120 K $0.22 \times 0.20 \times 0.11 \text{ mm}$

5670 measured reflections 2225 independent reflections 2039 reflections with $I > 3\sigma(I)$ $R_{int} = 0.048$

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.045 & \Delta\rho_{\rm max} = 0.28 \text{ e} \text{ Å}^{-3} \\ \omega_R(F^2) &= 0.109 & \Delta\rho_{\rm min} = -0.21 \text{ e} \text{ Å}^{-3} \\ S &= 1.93 & \text{Absolute structure: Flack (1983),} \\ 2225 \text{ reflections} & 915 \text{ Friedel pairs} \\ 189 \text{ parameters} & \text{Flack parameter: } 0.06 (2) \\ \text{H-atom parameters constrained} \end{split}$$

Table 1Hydrogen-bond geometry (Å, $^{\circ}$).

D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
0.96	2.59	3.177 (4)	119
0.96	2.51	3.471 (4)	178
0.96	2.61	3.545 (5)	164
	<i>D</i> —Н 0.96 0.96 0.96	$D-H$ $H \cdots A$ 0.96 2.59 0.96 2.51 0.96 2.61	$D-H$ $H \cdots A$ $D \cdots A$ 0.962.593.177 (4)0.962.513.471 (4)0.962.613.545 (5)

Symmetry codes: (i) -x + 2, $y - \frac{1}{2}$, -z + 1; (ii) -x + 1, $y - \frac{1}{2}$, -z.

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2005); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2008); data reduction: *CrysAlis RED*; program(s) used to solve structure: *SIR2002* (Burla *et al.*, 2003); program(s) used to refine structure: *JANA2006* (Petříček *et al.*, 2007); molecular graphics: *DIAMOND* (Brandenburg & Putz, 2005); software used to prepare material for publication: *JANA2006*.

We thank Gorgan University of Agricultural Sciences and Natural Resources (GUASNR) and the Institute of Physics of the ASCR (grant No 202/07/J007) for supporting this study. ADK thanks Dr Jan Fabry (Institute of Physics of ASCR) for his collaboration.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2844).

References

- Akkurt, M., Jarrahpour, A. A., Aye, M., Gençaslan, M. & Büyükgüngör, O. (2008). Acta Cryst. E64, o2175–o2176.
- Brandenburg, K. & Putz, H. (2005). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.
- Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Kashmiri, M. A., Tahir, M. N., Akhtar, M., Ahmed, M. & Hanif, Ch. A. (2008). Acta Cryst. E64, 0790.
- Khalaji, A. D. & Harrison, W. T. A. (2008). Anal. Sci. 24, x3-x4.
- Khalaji, A. D. & Ng, S. W. (2008). Acta Cryst. E64, 01771.
- Khalaji, A. D., Slawin, A. M. Z. & Woollins, J. D. (2007). Acta Cryst. E63, 04257.
- Khalaji, A. D., Welter, R., Amirnasr, M. & Barry, A. H. (2008). Anal. Sci. 24, x139-x140.
- Oxford Diffraction (2005). CrysAlis CCD. Oxford Diffraction Ltd, Oxford, England.
- Oxford Diffraction (2008). CrysAlis RED. Oxford Diffraction Ltd, Oxford, England.
- Petříček, V., Dušek, M. & Palatinus, L. (2007). *JANA2006*. Institute of Physics, Praha, Czech Republic.
- Ren, X.-Y. & Jian, F.-F. (2008). Acta Cryst. E64, o2027.
- Zhang, H. (2008). Acta Cryst. E64, o1219.

supplementary materials

Acta Cryst. (2009). E65, o253 [doi:10.1107/S1600536809000300]

4-Chloro-N-(3,4,5-trimethoxybenzylidene)aniline

A. Dehno Khalaji, J. Asghari, K. Fejfarová and M. Dusek

Comment

Studies on the Schiff-base compounds, products of condensation between aldehydes (or ketones) and amines, have received a lot of attention in recent years, (Khalaji *et al.*, 2008; Khalaji & Harrison, 2008; Khalaji *et al.*, 2007; Zhang, 2008; Akkurt *et al.*, 2008; Kashmiri *et al.*, 2008; Ren & Jian, 2008). As a continuation of these studies we present the crystal structure of $C_{16}H_{16}CINO_3$.

The molecular structure of the title compound is shown in Fig. 1. Bond lengths and angles are comparable with those observed in similar compounds (Khalaji *et al.*, 2008; Khalaji & Harrison, 2008; Khalaji *et al.*, 2007; Zhang, 2008; Akkurt *et al.*, 2008; Kashmiri *et al.*, 2008; Ren & Jian, 2008). In the crystal structure, intermolecular C—H…N and C—H…O hydrogen bonds are observed.

Experimental

The title compound was synthesized using a method analogous to the literature procedure of Khalaji and Ng (2008). Crystals appropriate for data collection were obtained by slow evaporation from methanol-chloroform (1:5 v/v) at a room temperature (yield 83%).

Refinement

All the H atoms were found in difference Fourier maps, but they were constrained to ideal positions. The isotropic atomic displacement parameters of hydrogen atoms were set to $1.2U_{eq}$ of the parent atom.

Figures

Fig. 1. The molecular structure of the title compound with atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2. The packing of (I) viewed along *a*, with hydrogen bonds shown as dashed lines.

4-Chloro-N-(3,4,5-trimethoxybenzylidene)aniline

Crystal data	
$C_{16}H_{16}Cl_1N_1O_3$	$F_{000} = 320$
$M_r = 305.75$	$D_{\rm x} = 1.379 {\rm ~Mg~m^{-3}}$
Monoclinic, P2 ₁	Cu K α radiation $\lambda = 1.54184$ Å
Hall symbol: P 2yb	Cell parameters from 4239 reflections
a = 7.2012 (2) Å	$\theta = 3.5 - 62.6^{\circ}$
<i>b</i> = 8.18700 (10) Å	$\mu = 2.37 \text{ mm}^{-1}$
c = 12.9734 (3) Å	T = 120 K
$\beta = 105.050 \ (2)^{\circ}$	Prism, colorless
$V = 738.63 (3) \text{ Å}^3$	$0.22\times0.20\times0.11~mm$
Z = 2	

Data collection

Oxford Diffraction Gemini diffractometer with Xcalibur goniometer, Atlas de- tector and Gemini ultra Cu source	2225 independent reflections
Radiation source: X-ray tube	2039 reflections with $I > 3\sigma(I)$
Monochromator: mirror	$R_{\rm int} = 0.048$
Detector resolution: 20.7567 pixels mm ⁻¹	$\theta_{\text{max}} = 62.7^{\circ}$
T = 120 K	$\theta_{\min} = 3.5^{\circ}$
rotation method data acquisition using ω scans	$h = -8 \rightarrow 7$
Absorption correction: numerical [based on the crystal shape, using the method imple- mented in CrysAlis RED (Oxford Diffraction, 2008) according to Clark & Reid (1995)]	$k = -9 \rightarrow 9$
$T_{\min} = 0.680, \ T_{\max} = 0.809$	$l = -14 \rightarrow 14$

5670 measured reflections

Refinement

Refinement on F^2	Weighting scheme based on measured s.u.'s $w = 1/[\sigma^2(I) + 0.0016I^2]$
$R[F^2 > 2\sigma(F^2)] = 0.045$	$(\Delta/\sigma)_{\rm max} = 0.013$
$wR(F^2) = 0.109$	$\Delta \rho_{max} = 0.28 \text{ e} \text{ Å}^{-3}$
<i>S</i> = 1.93	$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$
2225 reflections	Extinction correction: none
189 parameters	Absolute structure: Flack (1983), 915 Friedel pairs
65 constraints	Flack parameter: 0.06 (2)
H-atom parameters constrained	

Special details

Refinement. The refinement was carried out against all reflections. The conventional *R*-factor is always based on *F*. The goodness of fit as well as the weighted *R*-factor are based on *F* and F^2 for refinement carried out on *F* and F^2 , respectively. The threshold expression is used only for calculating *R*-factors *etc.* and it is not relevant to the choice of reflections for refinement.

The program used for refinement, Jana2006, uses the weighting scheme based on the experimental expectations, see _refine_ls_weighting_details, that does not force *S* to be one. Therefore the values of *S* are usually larger than the ones from the *SHELX* program.

x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
0.00790 (13)	0.16442 (1)	0.00937 (6)	0.0366 (3)
1.2823 (3)	0.6425 (3)	0.64185 (15)	0.0252 (7)
1.4726 (3)	0.8288 (3)	0.53638 (16)	0.0255 (7)
1.3717 (3)	0.8527 (3)	0.32476 (16)	0.0298 (8)
0.7360 (4)	0.5116 (4)	0.2085 (2)	0.0261 (10)
1.2081 (4)	0.6506 (4)	0.5342 (2)	0.0199 (9)
1.3141 (5)	0.7435 (4)	0.4792 (2)	0.0220 (10)
1.2528 (5)	0.7593 (4)	0.3685 (3)	0.0226 (11)
1.0855 (4)	0.6828 (4)	0.3111 (2)	0.0239 (10)
0.9789 (5)	0.5918 (4)	0.3668 (2)	0.0212 (10)
1.0392 (5)	0.5747 (4)	0.4767 (2)	0.0226 (11)
0.7985 (5)	0.5127 (4)	0.3104 (2)	0.0226 (10)
0.5578 (5)	0.4334 (4)	0.1638 (2)	0.0240 (10)
0.4039 (4)	0.4350 (4)	0.2092 (2)	0.0250 (11)
0.2330 (5)	0.3568 (4)	0.1612 (2)	0.0263 (11)
0.2161 (5)	0.2724 (4)	0.0662 (2)	0.0273 (11)
0.3676 (5)	0.2727 (4)	0.0172 (3)	0.0324 (12)
0.5356 (5)	0.3535 (5)	0.0654 (2)	0.0315 (12)
1.1767 (5)	0.5531 (5)	0.7017 (3)	0.0370 (13)
1.6479 (5)	0.7425 (5)	0.5441 (3)	0.0319 (12)
1.3098 (5)	0.8853 (5)	0.2132 (3)	0.0366 (14)
	x 0.00790 (13) 1.2823 (3) 1.4726 (3) 1.3717 (3) 0.7360 (4) 1.2081 (4) 1.3081 (4) 1.3141 (5) 1.2528 (5) 1.0855 (4) 0.9789 (5) 1.0392 (5) 0.7985 (5) 0.4039 (4) 0.2330 (5) 0.2161 (5) 0.3676 (5) 0.5356 (5) 1.1767 (5) 1.3098 (5)	x y $0.00790(13)$ $0.16442(1)$ $1.2823(3)$ $0.6425(3)$ $1.4726(3)$ $0.8288(3)$ $1.3717(3)$ $0.8527(3)$ $0.7360(4)$ $0.5116(4)$ $1.2081(4)$ $0.6506(4)$ $1.3141(5)$ $0.7435(4)$ $1.2528(5)$ $0.7593(4)$ $1.0855(4)$ $0.6828(4)$ $0.9789(5)$ $0.5747(4)$ $0.7985(5)$ $0.5127(4)$ $0.7985(5)$ $0.5127(4)$ $0.4334(4)$ $0.4350(4)$ $0.4330(5)$ $0.3568(4)$ $0.2724(4)$ $0.3676(5)$ $0.3575(5)$ $0.5531(5)$ $1.1767(5)$ $0.5531(5)$ $1.3098(5)$ $0.8853(5)$	x y z $0.00790(13)$ $0.16442(1)$ $0.00937(6)$ $1.2823(3)$ $0.6425(3)$ $0.64185(15)$ $1.4726(3)$ $0.8288(3)$ $0.53638(16)$ $1.3717(3)$ $0.8527(3)$ $0.32476(16)$ $0.7360(4)$ $0.5116(4)$ $0.2085(2)$ $1.2081(4)$ $0.6506(4)$ $0.5342(2)$ $1.3141(5)$ $0.7435(4)$ $0.4792(2)$ $1.2528(5)$ $0.7593(4)$ $0.3685(3)$ $1.0855(4)$ $0.6828(4)$ $0.3111(2)$ $0.9789(5)$ $0.5918(4)$ $0.3668(2)$ $1.0392(5)$ $0.5747(4)$ $0.4767(2)$ $0.7985(5)$ $0.5127(4)$ $0.3104(2)$ $0.5578(5)$ $0.4334(4)$ $0.1638(2)$ $0.4039(4)$ $0.4350(4)$ $0.2092(2)$ $0.2330(5)$ $0.2724(4)$ $0.0662(2)$ $0.3676(5)$ $0.2727(4)$ $0.0172(3)$ $0.5356(5)$ $0.3535(5)$ $0.7017(3)$ $1.6479(5)$ $0.7425(5)$ $0.5441(3)$ $1.3098(5)$ $0.8853(5)$ $0.2132(3)$

Fractional a	tomic coo	ordinates and	l isotropic	or e	quivalent	isotropic	c dis	placement	parameters ($(Å^2)$)
									(

supplementary materials

H4	1.043968	0.692286	0.234845	0.0286*
H6	0.964788	0.510597	0.51341	0.0271*
Н9	0.415976	0.491463	0.275474	0.03*
H10	0.126966	0.360818	0.193233	0.0316*
H12	0.354653	0.217079	-0.049398	0.0389*
H13	0.638975	0.355215	0.031235	0.0378*
H14a	1.230813	0.572264	0.776497	0.0444*
H14b	1.044923	0.588152	0.682085	0.0444*
H14c	1.182975	0.43867	0.686918	0.0444*
H15a	1.753739	0.805308	0.585471	0.0382*
H15b	1.643203	0.638974	0.578074	0.0382*
H15c	1.664554	0.725127	0.473844	0.0382*
H16a	1.401652	0.954863	0.192956	0.0439*
H16b	1.299241	0.784387	0.174383	0.0439*
H16c	1.186828	0.938464	0.197126	0.0439*
H7	0.723679	0.459098	0.351803	0.0271*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0321 (4)	0.0363 (4)	0.0337 (4)	-0.0062 (4)	-0.0049 (3)	-0.0031 (4)
01	0.0277 (12)	0.0274 (12)	0.0184 (10)	-0.0043 (10)	0.0021 (8)	-0.0007 (9)
O2	0.0210 (12)	0.0256 (12)	0.0276 (11)	-0.0031 (9)	0.0023 (9)	-0.0061 (9)
O3	0.0298 (13)	0.0353 (12)	0.0235 (11)	-0.0092 (11)	0.0054 (10)	0.0014 (10)
N1	0.0248 (16)	0.0292 (15)	0.0227 (15)	-0.0020 (12)	0.0032 (12)	-0.0012 (11)
C1	0.0216 (16)	0.0189 (14)	0.0184 (14)	0.0012 (14)	0.0039 (11)	-0.0004 (13)
C2	0.0190 (16)	0.0203 (15)	0.0239 (17)	-0.0012 (13)	0.0007 (13)	-0.0033 (12)
C3	0.0235 (18)	0.0192 (17)	0.0280 (17)	-0.0008 (13)	0.0115 (14)	0.0002 (12)
C4	0.0229 (17)	0.0235 (17)	0.0235 (15)	0.0008 (14)	0.0030 (12)	0.0005 (13)
C5	0.0182 (18)	0.0199 (15)	0.0251 (17)	0.0011 (12)	0.0046 (14)	-0.0007 (12)
C6	0.0239 (19)	0.0209 (17)	0.0227 (17)	0.0018 (13)	0.0057 (13)	0.0015 (12)
C7	0.0211 (17)	0.0200 (16)	0.0251 (17)	-0.0003 (13)	0.0033 (13)	-0.0005 (13)
C8	0.0263 (17)	0.0220 (16)	0.0206 (16)	-0.0015 (15)	0.0007 (13)	-0.0004 (13)
C9	0.0252 (18)	0.0281 (18)	0.0201 (16)	0.0027 (15)	0.0032 (13)	0.0004 (13)
C10	0.0254 (19)	0.0296 (18)	0.0219 (17)	0.0010 (14)	0.0024 (13)	0.0003 (14)
C11	0.034 (2)	0.0230 (16)	0.0191 (16)	0.0008 (14)	-0.0037 (14)	0.0007 (12)
C12	0.032 (2)	0.0353 (19)	0.0270 (18)	0.0025 (16)	0.0020 (15)	-0.0050 (14)
C13	0.032 (2)	0.040 (2)	0.0226 (17)	-0.0018 (16)	0.0080 (14)	-0.0030 (15)
C14	0.035 (2)	0.048 (2)	0.0262 (19)	-0.0060 (18)	0.0048 (15)	0.0083 (16)
C15	0.0185 (18)	0.0334 (18)	0.040 (2)	0.0021 (15)	0.0018 (15)	0.0018 (15)
C16	0.042 (2)	0.043 (2)	0.0260 (18)	-0.0086 (17)	0.0097 (16)	0.0074 (15)

Geometric parameters (Å, °)

Cl1—C10	2.708 (3)	С7—Н7	0.96
Cl1—C11	1.732 (3)	C8—C9	1.384 (5)
Cl1—C12	2.714 (4)	C8—C13	1.406 (5)
O1—C1	1.362 (3)	C9—C10	1.383 (4)
O1—C14	1.423 (5)	С9—Н9	0.96

D—H··· A		D—H	$H \cdots A$	$D \cdots A$	<i>D</i> —H…
Hydrogen-bond geometry (Å, °)					
C8—C9—C10	121.4 (3)		H16b—C16—H16c		109.4715
C9—C8—C13	118.4 (3)		H16a—C16—H16c		109.4712
N1—C8—C13	117.3 (3)		H16a—C16—H16b		109.4712
N1—C8—C9	124.2 (3)		O3-C16-H16c		109.4711
С5—С7—Н7	118.4335		O3-C16-H16b		109.4714
N1—C7—H7	118.4336		O3—C16—H16a		109.4709
N1—C7—C5	123.1 (3)		H15b—C15—H15c		109.4714
С5—С6—Н6	119.9698		H15a—C15—H15c		109.4714
С1—С6—Н6	119.9695		H15a—C15—H15b		109.4705
C1—C6—C5	120.1 (3)		O2-C15-H15c		109.4715
C6—C5—C7	118.0 (3)		O2—C15—H15b		109.4711
C4—C5—C7	120.8 (3)		O2—C15—H15a		109.4714
C4—C5—C6	121.2 (3)		H14b—C14—H14c		109.471
С5—С4—Н4	120.6756		H14a—C14—H14c		109.4714
С3—С4—Н4	120.6757		H14a—C14—H14b		109.4712
C3—C4—C5	118.6 (3)		O1-C14-H14c		109.4713
C2—C3—C4	120.5 (3)		O1-C14-H14b		109.4711
O3—C3—C4	125.1 (3)		O1-C14-H14a		109.4713
O3—C3—C2	114.3 (3)		С12—С13—Н13		119.5353
C1—C2—C3	120.5 (3)		C8—C13—H13		119.5347
O2—C2—C3	120.3 (3)		C8—C13—C12		120.9 (4)
O2—C2—C1	119.1 (3)		C13—C12—H12		120.2719
C2—C1—C6	119.0 (3)		C11—C12—H12		120.2721
O1—C1—C6	125.5 (3)		C11—C12—C13		119.5 (3)
O1—C1—C2	115.4 (3)		C10-C11-C12		120.2 (3)
C7—N1—C8	117.6 (3)		C11—C10—H10		120.265
C3—O3—C16	117.3 (2)		С9—С10—Н10		120.2657
C2—O2—C15	112.4 (3)		C9-C10-C11		119.5 (3)
C1—O1—C14	117.5 (2)		С10—С9—Н9		119.2983
C10-Cl1-Cl2	52.95 (11)		С8—С9—Н9		119.2976
С6—Н6	0.96		C16—H16c		0.96
С5—С7	1.466 (4)		C16—H16b		0.96
C5—C6	1.385 (4)		C16—H16a		0.96
C4—H4	0.96		C15—H15c		0.96
C4—C5	1.398 (5)		C15—H15b		0.96
C3—C4	1.390 (4)		C15—H15a		0.96
C2—C3	1.395 (4)		C14—H14c		0.96
C1—C6	1.397 (4)		C14—H14b		0.96
C1—C2	1.397 (5)		C14—H14a		0.96
N1—C8	1.417 (4)		С13—Н13		0.96
N1—C7	1.282 (4)		С12—Н12		0.96
O3—C16	1.424 (4)		C12—C13		1.378 (5)
O3—C3	1.375 (4)		C11—C12		1.398 (6)
02—C15	1.427 (4)		C10—H10		0.96
O2—C2	1.379 (4)		C10-C11		1.390 (5)

D—Н Н…*А*

D—H···A

supplementary materials

C7—H7···O1 ⁱ	0.96	2.59	3.177 (4)	119		
C7—H7···O2 ⁱ	0.96	2.51	3.471 (4)	178		
C12—H12···N1 ⁱⁱ	0.96	2.61	3.545 (5)	164		
Symmetry codes: (i) $-x+2$, $y-1/2$, $-z+1$; (ii) $-x+1$, $y-1/2$, $-z$.						

